The Vibrio cholerae Minor Pilin TcpB Initiates Assembly and Retraction of the Toxin-Coregulated Pilus

نویسندگان

  • Dixon Ng
  • Tony Harn
  • Tuba Altindal
  • Subramania Kolappan
  • Jarrad M Marles
  • Rajan Lala
  • Ingrid Spielman
  • Yang Gao
  • Caitlyn A Hauke
  • Gabriela Kovacikova
  • Zia Verjee
  • Ronald K Taylor
  • Nicolas Biais
  • Lisa Craig
چکیده

Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin.

Pilin assembly into type IV pili is required for virulence by bacterial pathogens that cause diseases such as cholera, pneumonia, gonorrhea, and meningitis. Crystal structures of soluble, N-terminally truncated pilin from Vibrio cholera toxin-coregulated pilus (TCP) and full-length PAK pilin from Pseudomonas aeruginosa reveal a novel TCP fold, yet a shared architecture for the type IV pilins. I...

متن کامل

Expression of Recombinant Protein B Subunit Pili from Vibrio Cholera

Background & Aims: Vibrio cholerae is a gram-negative bacterial pathogen that causes cholera disease. Following ingestion by a host and entry into the upper intestine, V. cholera colonizes and begins to emit enterotoxin. One of the most pathogenic factors of Vibrio cholera is toxin-coregulated pili (TCP). ToxinCoregulated pili is as the primary factor requiered for the colonization and insisten...

متن کامل

NMR structure of a type IVb pilin from Salmonella typhi and its assembly into pilus.

The structure of the N-terminal-truncated Type IVb structural pilin (t-PilS) from Salmonella typhi was determined by NMR. Although topologically similar to the recently determined x-ray structure of pilin from Vibrio cholerae toxin-coregulated pilus, the only Type IVb pilin with known structure, t-PilS contains many distinct structural features. The protein contains an extra pair of beta-strand...

متن کامل

Localization of protective epitopes within the pilin subunit of the Vibrio cholerae toxin-coregulated pilus.

From a collection of monoclonal antibodies (MAbs) that recognize the native structure of the toxin-coregulated pilus of Vibrio cholerae, two protective MAbs (16.1 and 169.1) were used to localize the corresponding epitopes on the pilus. These MAbs were shown to specifically recognize the carboxyl half of the TcpA pilin subunit, as determined by their recognition of proteolytic fragments and hyb...

متن کامل

Model of Vibrio cholerae toxin coregulated pilin capable of filament formation.

A complete three-dimensional model (RCSB001169; PDB code 1qqz ) for the Vibrio cholerae toxin coregulated pilus protein (TcpA), including residues 1-197, is presented. We have used the crystal structure of the Neisseria gonorrhoeae pilin (PilE), available biochemical data about TcpA, variations in the primary sequences of TcpA among various Vibrio cholerae strains and secondary structure predic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016